Contents
Chapter 1:
 Welcome to the ERMP
1
Chapter 2:
 Introduction to Digital Humanities
2
Chapter 3:
 Introduction to XML and XSLT
5
Chapter 4:
 Introduction to the TEI
9
Chapter 5:
 How we use the TEI
14
Chapter 6:
 Consistency, Consistency, Consistency
16
Chapter 7:
 Established Encoding Procedure
18
Chapter 8:
 Non Coding Tasks for the ERMP
21
Chapter 9:
 Where it goes from here
24
Further Reading
26
Appendix
28
Ch.1 Welcome to the ERMP

Welcome to the Early Ruskin Manuscripts Project! As a part of this project you will have the opportunity to learn and practice many useful skills related to digital publication. You are no doubt eager to dive right into encoding Ruskin’s work, but first please take a few minutes to familiarize yourself with a couple of topics related to this project and what we do here. This document should serve to orient you to the project as a whole as well as provide reference material which you should find helpful throughout your work in the ERMP.

Who is John Ruskin?

John Ruskin was a nineteenth-century British art and social critic and a significant amateur artist. From his birth in 1819 to his death in 1900, Ruskin wrote hundreds of works ranging from poems and plays to essays and social criticism. He began writing as a child in 1826 under the tutelage of his parents John James and Margaret Ruskin who saved all of his earliest writings. For this reason Ruskin’s early manuscripts make a good subject for a scholarly archive as we are able to watch the writer’s work evolve as he ages, and the archive is so complete and various as to constitute a rich documentary account of an early Victorian education. Ruskin’s work lends particularly well to digital scholarship as it is hypertextual in nature. This is to say, many of Ruskin’s pieces are not meant to stand alone but rather are best viewed in the context of another work.

What is the ERMP?

The Early Ruskin Manuscripts Project (ERMP) officially began in the summer 2009 semester with a Louisiana Board of Regents Undergraduate Enhancement grant awarded to the English department at Southeastern Louisiana University (SELU). The research for ERMP was begun much earlier by Dr. David Hanson, supported by a Louisiana Board of Regents ATLAS grant, as well as by various grants from the National Endowment for the Humanities, the American Philosophical Society, the Bibliographical Society of America, the South Central Modern Language Association, the Beinecke Library, the Huntington Library, NINES, and Southeastern Louisiana University.
The ERMP is a digital humanities project which seeks to create an online scholarly archive of the juvenile and youthful writings of John Ruskin between 1826 and 1842. We do this by encoding each of his works, as well as an associated textual apparatus written by Dr. Hanson, in Extensible Markup Language (XML) following the Text Encoding Initiative (TEI) guidelines. Each XML file is then combined with an Extensible Stylesheet Language (XSL) transformation and a comprehensive collection of images of original Ruskin manuscripts to produce a document capable of being displayed on the web. In addition to the creation of the Ruskin archive, the ERMP’s eventual goal is to fully integrate with NINES (Networked Infrastructure for Nineteenth-Century Electronic Scholarship) allowing the collected Ruskin material to be manipulated via the sophisticated applications designed by this organization.
Ch.2 Introduction to Digital Humanities

The ERMP is a part of a larger field of scholarship called digital humanities, or humanities computing. Digital humanities are an interdisciplinary attempt to bring technology into humanities scholarship. This involves a broad spectrum of academic interests ranging from art, geography, and psychology to computer science, library science, and publishing. For example, geographic information systems (GIS) are now a popular example of digital humanities projects, using computer technology to marry geographic data with humanistic research.

For our purposes the field of digital humanities is best understood as the application of computer technology to traditional literary scholarship. For the ERMP, this takes the form of text encoding, or the utilization of a markup language (XML), to convert a traditional literary work into hierarchical data. This data can then be used and manipulated by scholars doing online research to achieve new and quick insight into the text.

Why bother with this work?

Approaching a text from a digital framework offers several basic advantages over traditional scholarship. Perhaps most obvious is the advantage of being able to consider vast amounts of information about a text simultaneously without a great expenditure of effort or resources. To view the complete corpus of Walt Whitman for example, you need not acquire and flip through every example of Whitman’s published and unpublished work but rather simply log onto the Walt Whitman Archive and open the relevant information.

Another useful aspect of a digital archive is searchability. Consider the scholar interested in comparing every poem written by Ruskin between the years 1826 and 1830 as a New Year’s present to his father. Assuming the works are encoded appropriately, the information could be served up in seconds whereas traditional research methods might take days or weeks to achieve the same result. When the searchability aspect is approached from an organization like NINES, the benefits become even more dramatic. Through NINES someone interested in London’s botanical history might have instant access to every work mentioning papyrus sedge during the nineteenth century, including any mention in Ruskin’s early botany.

The final significant advantage of digital scholarship has to do with the durability of encoded data. Once a document is encoded in XML, its lifespan essentially becomes indefinite. As long as there are ways of displaying the data, the document will remain relevant and preserved. In fact a paper printout of a raw XML encoded document retains the essential benefits of the scholarship that went into creating it. Even as technology evolves, the XML document will maintain compatibility with the new changes, requiring only the application of a new XSL transformation.

What are some current examples?

The ERMP is not the first scholarly archive of this kind. There have already been many completed projects and there will certainly be many more in the future. A great way to gain an understanding of the purpose and goals of this project is to acquaint yourself with similar scholarly activities. In fact, the first thing you should do is visit the Modern Painters website at www.lancs.ac.uk/fass/ruskin/empi/index.htm. This digital edition of Ruskin’s first major book serves as a great example of the type of archive we are looking to create. Notice that the website contains scanned images of every witness of the published book as well as the manuscript version. This website does not as yet contain many of the benefits of XML encoding, however, as you can see from the lack of transcription of each witness. Only the manuscript is transcribed and this is accessible only from a small button at the bottom. Nevertheless, you can see how useful such an edition might be, even in its image-based format.
Other important electronic scholarly sites devoted to Ruskin include Ruskin’s Venetian Notebooks (http://www.lancs.ac.uk/depts/ruskinlib/eSoV/index.html), The Elements of Drawing (http://ruskin.ashmus.ox.ac.uk), and the online journal The Eighth Lamp (http://www.oscholars.com/Ruskin/start.htm)
The Walt Whitman archive, www.whitmanarchive.org, serves as a clear example of our aims and methods in ERMP. Navigate to the manuscripts portion of the website from the homepage to view a list of Whitman’s work with associated image and transcribed documents. You can see how the transcribed portion of the work can be used in conjunction with the scanned image file of the original manuscript for a better understanding of the work.

The Whitman archive is also useful for an example of meticulously documenting its approach to the project. The “About the Archive” portion of the website provides a history of the project, describes the editorial policies and procedures, and even offers a “frequently asked questions” section. These and similar resources on other archives provide an excellent way to gain fellow researchers’ perspectives on coding issues we will encounter in ERMP.

What is NINES?

NINES is an organization providing the tools necessary to search many different nineteenth-century scholarly archives at once. NINES’ specialized tools also enable searches of a single archive with more sophistication. Using a NINES application will, for example, allow users to compare every available different witness of a text and highlight every instance whereby one witness differs from another. NINES is able to accomplish this by insisting on uniformity of coding practices by its member archives, so that a tool developed for NINES can be implemented on any of the participating archives. Specifically, the organization requires adherence to the TEI guidelines as explained in Chapter 4. NINES also serves to aggregate and peer-review the materials posted to its member sites. Inclusion in the NINES organization is an ultimate goal of the ERMP.

Where can I learn more?

Digital humanities scholarship is a fledgling field in academia, but more and more universities are offering programs dedicated to this approach. There are many good resources available to those looking to expand their knowledge of this subject.
The Modern Language Association (MLA) provides a valuable resource concerning the creation of online scholarly archives through their Guidelines for Editors of Scholarly Editions found on their website. (http://www.mla.org/resources/documents/rep_scholarly/cse_guidelines). These guidelines provide a good starting resource for those beginning to work with digital humanities projects by focusing on the concerns of a scholarly edition, or specifically a digital scholarly edition.
In addition to the wealth of information available online, the University of Victoria in British Columbia, Canada offers an annual course selection called the Digital Humanities Summer Institute (www.dhsi.org). The introductory course “Text Encoding Fundamentals and their Application” is a must for anyone seriously interested in this field. More advanced courses should be taken to suit your interest in the subject. Travel bursaries and tuition scholarships are offered annually for graduate students attending these seminars.

Ch.3 Introduction to XML and XSLT

In order to work with a text in a digital environment, the text must first be encoded in a markup language. This process provides the computer the means of viewing a text as data. This is necessary because a computer makes no distinction or judgment about the information it is working with. Unlike a human, a computer cannot understand that a paragraph is different from a heading or a title, and so it must be given this information. We can provide this information by enclosing sections of a document with a series of “tags” surrounded by angle brackets, and these tags provide instructions to the computer about the content being marked up.

There are a variety of markup languages to choose from when embarking on a digital project, each with its own advantages. HyperText Markup Language (HTML) is a familiar example used by web browsers to display web pages. HTML mixes tags describing a document’s content with an understanding of the visual hierarchy associated with the display of the document.

While familiarity with HTML may provide some benefits in your work with the ERMP, it is important to remember that when we encode a document in XML we are not concerned with how it will be displayed as a web page, but rather as data. If you want to mark something as a paragraph, for example, you are not marking it that way so that it can be rendered in a certain way, but rather because it is a particular object called a paragraph. It is difficult to separate these two ideas in your mind, but the distinction is crucial to identifying, manipulating, and preserving scholarly data rather than merely exhibiting it. The visual appearance of an encoded document comes into play later in the process.

What is XML?

Extensible Markup Language (XML) is a language used to prepare a document as machine readable data. XML provides the rules for encoding the document. These rules are simple and straightforward. XML documents are defined by tags and their attributes in relation to each other. In this way the data enclosed in the tags can be organized into a hierarchical structure resembling a family tree. In fact, the terminology used to describe XML is similar to genealogical terminology.

Unlike HTML, XML is concerned only with the content of the document. There are no assumptions about the display of particular tags or even the meaning of a particular tag. The element <p>Jiffy</p> may mean a paragraph starting with the word Jiffy to someone working with a manuscript, or it may mean peanut butter to a grocer encoding his various brand names for inventory. For this reason, tags should be created and documented in a way that they communicate meaningful and consistent information to the reader.
Why encode in XML?

While a common use of XML is a transformation into HTML readable by web browsers, XML provides a number of advantages over encoding directly into HTML. For one, encoding a text as data in XML allows for a master version of the file which need not be changed as technology evolves. Were the works to be encoded directly in HTML, they would need to be re-encoded as browsers stopped supporting older versions of HTML. XML is an open language and is not proprietary, thus preventing issues of loss of support.

Another reason to encode in XML is that it is a human-readable language. The language is as easy to understand as the tags that are created for it. Unlike HTML, XML can be interpreted by people who possess very little technical training. The technical aspects of performing the transformations can then be developed as needed without a massive investment in training all encoders.

Finally, XML easily integrates with XSLT to generate a number of different types of documents from a single XML master. If you wanted to create an HTML web page, a PDF for email distribution, and a Text file for printing, you could accomplish all of these tasks from the same XML document. You would need only to apply the appropriate transformations.

Terminology:

Tag – An XML tag is a marker used to convey some information about a portion of a document. An XML tag is surrounded by angle brackets (<>), which indicate to the computer that the tag is separate from the content it contains. XML tags must always terminate with a closing tag. This closing tag resembles the opening tag but includes a (/) between its opening angle bracket and the beginning of the tag name. Example: <tag>This is an XML element.</tag>

Attribute – Sometimes a tag alone is insufficient to convey the relevant information about its content. More particularizing information, a subset of the tag, requires the addition of an attribute. Attributes are nested within the tag between the end of the tag name and the final angle bracket (>). Attributes are not included in the closing tag. Example: <tag date="7/14/10">This is an XML element.</tag> Notice how the addition of the attribute date provides additional information about the element.

Value – A value is the data contained by the attribute. This data is always contained in quotation marks to indicate that it is a value. Example:<tag date-"7/14/10">This is an XML element.</tag>. The date 7/14/10 is the value of the attribute date.

Element – An Element is the entire piece of data including the Start and End tags and the relevant attributes.
Child / Parent – When an element is contained within another element it is said to be the child of that element. Correspondingly, the element containing the child is called the parent. An element is the descendant of all of its parents and is the ancestor of all of its children. The root element is the first element encountered in the document and is the ancestor of all of the other elements.

Siblings – Two or more tags at a similar level of the parent-child hierarchy are called siblings.

Well-formed – Code that follows the rules of XML is said to be “well-formed.”
Rules:
	XML elements must have a closing tag.
	<s>This is NOT a correct element.

<s>This is a correct element.</s>

	XML tags are case sensitive.
	<Sensitive>The opening and closing

tags must match exactly. </Sensitive>

	XML tags must be properly nested.
	<p>If an element begins within another element it must also be closed within it.</p>

	XML files must contain a root element.
	<root>

 <child>There can be only one

 root element in a

 document.</child>

</root>

	XML attribute values must be quoted.
	<div type="poem">Valid</div>

<div type=poem>Not Valid</div>

Example:

If you wanted to XML encode your grocery list it would appear something like this:

	 Milk

 12 Eggs

 Bacon
	<Groceries>

 <Item>Milk</Item>

 <Item count="12">Eggs</Item>

 <Item>Bacon</Item>

</Groceries>

Where can XML be written?

XML can be written in a program as simple as Notepad. The examples contained within this document, for example, are valid XML code. It is, however, more convenient sometimes to use a program specific to XML. For ERMP, we use the oXygen XML editor to do our encoding. This program allows for a better visualization of the document’s hierarchy and also performs several checks to ensure that the code produced is valid and well-formed. More information on oXygen can be found at the developer’s website, www.oxygenxml.com.

What is XSLT?

Extensible Stylesheet Language Transformations (XSLT) allow you to transform XML documents into pretty much any other type of document. These transformations can even create another XML document allowing for very simple updating. In the ERMP, we use these transformations primarily to produce HTML documents for display on the internet. These transformations require familiarity with the XSL language, which is presently beyond the scope of the ERMP’s graduate assistants; however, it is necessary to understand how the transformations work in a general sense. XSLT recurses through an XML document looking for elements that match specific conditions. When the conditions match, the program transforms the code in some way. It is important, therefore, to remain consistent, as the XSL transformation will not recognize variations in coding practice. In other words, if you use the code <hi rend="italic">italic</hi> to represent a word in italics and later use <hi rend="italics">italic</hi> to represent the same thing, XSLT will not be able to pick up on this slight change. For the same reason, elements should be nested in a similar way every time. For more on the importance of consistency, please see Chapter 6. After the transformation is applied, XSLT generates a new file with the appropriate extension, which can be used however it is intended. To learn more about XSL visit http://unixgen.muohio.edu/~chat/xslt/.

What is the big picture?

With so much going on in so many different files, it can become confusing as to the overall process, so let’s look at the big picture. As a member of the ERMP team, you will be encoding XML files; and these files will be combined with XSLT files to produce an HTML file. This file will then have a Cascading Style Sheet (CSS) applied to it in order to make it look attractive on a browser. The end result of these combinations will be a user friendly online archive of Ruskin’s work. You will be encoding the master XML files so that all of the other behind-the-scenes transformations can happen. These later stages, while important, should have little impact on the way you encode your documents. Still, it is important to appreciate the entire project, as understanding what will become important down the line will make for fewer errors now.

Ch.4 Introduction to the TEI
XML provides the tools needed to view a text as data. However, because of XML’s extensibility, or the ability to create an unlimited number of tags of one’s own invention, we are faced with the problem of standardization. As the previous chapter explained, an XML tag has no meaning in and of itself; therefore, it is comprehensible only to those who understand the encoder’s structure and consider the structure relevant to their needs. It is necessary, then, to specify the tags used in a project and their meaning. This problem is solved for the ERMP by the Text Encoding Initiative (TEI). Through the TEI’s guidelines, we are able to establish a set of tags with meanings relevant to text encoding for digital humanities.

What is the TEI?

The TEI is a consortium dedicated to developing a system of standards in regards to representing a text in digital form. They produce a set of guidelines that dictate the commonly accepted usage for XML tags as they relate to humanities scholarship. These guidelines are maintained and updated by the consortium with their most recent release, at the time of writing, being the TEI P5 guidelines. Adherence to these guidelines allows for a shared knowledge of coding practices, so that different researchers have access to a common understanding of and collaboration on digital projects.

While the TEI guidelines supply digital humanities scholarship with a concrete and standardized set of tags, the guidelines themselves must be constrained in order to be of any practical use. Since the TEI covers all sorts of humanities computing ranging from social sciences to literature and beyond, the P5 guidelines are in excess of 1400 pages in print form. It is necessary, then, for us to focus on the specific area of the TEI relating to the ERMP. This can be accomplished by the use of XML schemas as will be described in Chapter 5.

How do I use the TEI guidelines?

The guidelines should be viewed as the definitive answer to any problem of text encoding. However, it is not expected or necessary for ERMP team members to memorize or even read extensively in the TEI guidelines. Rather, ERMP members should familiarize themselves with the document as a resource for assisting with their encoding. A good way to learn to encode a TEI-compliant document is, after familiarizing yourself with the basics, to review some of the ERMP’s previously encoded work and look up the meaning of codes as you encounter them. For this purpose, several ERMP files have been appended to this manual. As you discover challenging coding situations in your own work, use the guidelines to solve the problem at hand. Because of the TEI’s scope, there is usually a solution to be found.

Take for example “Harry and Lucy Vol. 1”, one of Ruskin’s earliest writings. Ruskin had not yet mastered the use of punctuation, and consequently this manuscript makes for a very challenging text to encode. The very first paragraph reads like this:

mamma said Lucy papa has gone out to town earlyer than usual. Has he any business more to do?"

Notice that Ruskin writes only the closing quotation marks at the end of the line, and neglects placing opening quotation marks at the start of the dialog. It is important to capture such intricacies in the encoding process so that the XML document accurately reflects the original manuscript. By consulting the TEI guidelines, this encoder found that the <said> tag, used to indicate dialog, is able to take the rend attribute. This attribute allows for peculiar rendering within a document. The resulting TEI-encoded solution is:

<said rend="noquote">mamma</said> said Lucy <said rend="endquote">papa has gone out to town earlyer than usual. Has he any business more to do?</said>

Encoding the line in this way allowed the encoder to define the parameters of Ruskin’s presumably intended dialog while communicating and leaving unaltered his irregular punctuation choices. To indicate the peculiarity, the encoder was able to mark the first half of the dialog with the rend attribute “noquote” describing a lack of punctuation, while he assigned to the start of the second half the attribute “endquote” describing the lack of half the punctuation. Notice that encoding can entail a more or less sophisticated act of literary interpretation, about which the ERMP team needs to agree.

How can a text be encoded?

When encoding a document for the ERMP it is important to train yourself to view a text as data. Normally, you do this intuitively, as you separate texts into headings, body content, chapters, paragraphs, stanzas and lines of poetry, and so on. You must learn, however, to recognize these structures as encodable aspects of documents. Let’s consider again the above example from “Harry and Lucy Vol. 1.” What else besides dialog can be encoded? This example is a paragraph of dialog containing a speaker. We are also given a proper name, Lucy. Let’s look at how all of these elements might look encoded when following the TEI guidelines.

<p><said who="Lucy" rend="noquote">mamma</said> said <persName>Lucy</persName> <said who="Lucy" rend="endquote">papa has gone out to town earlyer than usual. Has he any business more to do?</said></p>

In this more fully encoded version, we are able to view the text broken down further into the data it represents. First, the entire example has been wrapped with the <p> tag to indicate that it is a paragraph. This is the highest level of encoding represented in the example, and so all subsequent tags are nested within these paragraph markers. Next, we see that the speaker of the dialog is indicated by the attribute who within the <said> tag. While the addition of this attribute might at first seem to provide pedantically obvious information, consider its power for searchability. For example, the markup would enable a web application that color coordinates each speaker’s dialog so that the different speakers can be easily picked out. The computer would need to know who is speaking, which it would not be able to intuit from the paragraph as originally written, as a human can. Finally, as yet another useful element, we have the proper name, Lucy, which is wrapped in the <persName> tag, used to mark proper nouns as people’s names.

There are even deeper levels of encoding which could be performed on this tiny section of text. Since this is the first paragraph of the work, the n or number attribute could be applied to the <p> tag and given a value of “1” to indicate this, and successive paragraphs numbered accordingly. The town to which Lucy refers is London, and this place name could be encoded, as well – or even a specific part of London, such as what Victorian Londoners called “The City.” Given an unlimited amount of time and resources, the depth of encoding can be almost indefinitely enriched. Ultimately, there needs to be some practical limitation to the amount of encoding attempted, however. The ERMP has developed a series of encoding stages, each focusing on a specific aspect of the encoding to prevent extraneous markup. These stages will be described in Chapter 7.

Example:

Let’s consider one final example of a text and its digital representation, a short poem by Lewis Carroll. Notice below how relevant textual information has been encoded as data. The entire poem is wrapped in a <div> tag to indicate it as a major division. In addition, each stanza is wrapped in a <lg> tag to mark it as a line group, and each line is wrapped in a <l> tag so that it can be identified as a line of poetry.
	How doth the little crocodile

Improve his shining tail,

And pour the waters of the Nile

On every golden scale!

How cheerfully he seems to grin,

How neatly spreads his claws,

And welcomes little fishes in

With gently smiling jaws!

	<div type="poem">

 <lg type="stanza" rhyme="abab" n="1">

 <l>How doth the little crocodile</l>

 <l>Improve his shining tail,</l>

 <l>And pour the waters of the Nile</l>

 <l>On every golden scale!<l>

 </lg>

 <lg type="stanza" rhyme="abab" n="2">

 <l>How cheerfully he seems to grin,</l>

 <l>How neatly spreads his claws,</l>

 <l>And welcomes little fishes in</l>

 <l>With gently smiling jaws!</l>

 </lg>

</div>

What does a TEI document look like?

So far, we have considered only a portion of an encoded document, albeit the most substantial portion – the body of the file containing the encoded text. What does a TEI file look like as a whole? TEI files are broken into two main sections, the header which contains information about the document, and the body which contains the encoded text derived from the original source. These two sections are joined and integrated to form a sort of rigid skeleton that must be maintained from file to file. The Lewis Carroll poem would look something like the example below as a finished file. Its structure represents the basic required information for any TEI document (although note that, in an actual TEI file, the labels “Header section” and “Text section” would be omitted).

Header section:

<TEI xmlns="http://www.tei-c.org/ns/1.0">

 <teiHeader>

 <fileDesc>

 <titleStmt>

 <title>How Doth the Little Crocodile</title>

 <author>Lewis Carroll</author>

 <editor>Stephen Haddad</editor>

 </titleStmt>

 <publicationStmt>

 <p>An unpublished document used for training.</p>

 </publicationStmt>
 <sourceDesc>

 <bibl>
 <title>Alice’s Adventures in Wonderland</title>

 <author>Lewis Carroll</author>

 <note type="transcription">Transcribed from an online version of the poem

found on Wikipedia.</note>
 </bibl>
 </sourceDesc>

 </fileDesc>

 </teiHeader>

Text section:

 <text>

 <body>

 <div type="poem">

 <lg type="stanza" rhyme="abab" n="1">
 <l>How doth the little crocodile</l>

 <l>Improve his shining tail,</l>

 <l>And pour the waters of the Nile</l>

 <l>On every golden scale!<l>
 </lg>
 <lg type="stanza" rhyme="abab" n="2">
 <l>How cheerfully he seems to grin,</l>

 <l>How neatly spreads his claws,</l>

 <l>And welcomes little fishes in</l>

 <l>With gently smiling jaws!</l>

 </lg>
 </div>

 </body>

 </text>

</TEI>

Where can I learn more?

While the TEI guidelines should be consulted frequently throughout your work with the ERMP, the guidelines contain far too much information to explain exhaustively in this manual. Information on the TEI is available at the consortium’s website, www.tei-c.org. This website contains both general and specific information pertaining to every aspect of text encoding. The complete set of TEI P5 guidelines is also available in a convenient PDF downloadable file (practical if one intends to download only a portion), or the whole can be purchased in bound format. In addition to the TEI’s official website, there is also a resource called TEI by Example, which provides TEI solutions to specific encoding problems (http://tbe.kantl.be/TBE/TBE.htm).

Ch.5 How We Use the TEI

In order to restrict the XML code available to ERMP encoders, we use an XML Schema. The ERMP has already developed an XML schema for use with this project. This schema is available on the portable hard drive used to house the project’s documents. Each time you begin a new document, you will need to make sure that the schema is associated with the file you are working on.

What is a schema?

A schema is essentially a list of acceptable tags and their conditions for a given XML document. Using an XML editor like oXygen allows you to associate the schema with the file you are working on. By viewing an XML file in the context of a schema, we are able to see immediately when code is used incorrectly. Code that follows the rules mandated by a schema is said to be valid code. Documents for the ERMP must be both valid according to the schema and well-formed according to the general XML rules. It is important to remember that, while the schema prevents incorrect code from entering a document, it does not prevent inconsistent code. The file must still be checked for consistency by the encoder.

How do I associate a schema?

Associating a schema in oXygen is a simple process which will save a tremendous amount of headache.

1. Select the “XML Document” button under the “Document” menu.

2. Select “Associate Schema” to bring up the “Associate Schema” dialog box.

3. Select “RelaxNG Schema” from the overhead tabs.

4. Use the option to navigate to the ERMP schema file called “ruskin.rnc.”

After pressing “OK” you will notice that oXygen automatically inputs a line of code at the top of your document. The code will look similar to this:

<?oxygen RNGSchema="../../ruskin.rnc" type="compact"?>.

The code differs according to where the schema is located on a particular computer. Still it is easy to see how this line of code works: as long as the value of the attribute RNGSchema contains the file path to the “ruskin.rnc” file, the schema is correctly associated.

How do I use the schema?

A schema requires nothing more than associating it. After this process is completed, oXygen uses the schema passively while you encode, making sure that you are producing a valid result. Where tags are not valid — say, in the event of a typo — you will notice a red squiggly line underneath the incorrect code. This line is similar to the way Microsoft Word draws your attention to misspelled words. If you don’t see any red markings then you know your code is valid. If you do, then you can easily identify and correct the problem.

How does the ERMP maintain consistency?

In addition to the use of a schema to regulate valid code, the ERMP follows a number of style recommendations for improving the consistency of coded work. These recommendations fall into two categories: first, HTML entities represent the values that should be substituted for specific punctuation marks; second, style values represent the way specific situations should be treated in a document.
HTML entities:

Below is a list of HTML entities currently used by the ERMP. The values on the right should take the place of the punctuation mark on the left. These values go directly in place of punctuation, and so it is easiest to compose the file using the conventional punctuation marks and run the “find and replace” function in oXygen to replace the values as needed. When the HTML entities are read by a browser, they will instruct the browser as to the appropriate mark.

	Character Type
	Roger's Encoding
	HTML/XML Encoding

	Left Double Quotation Mark (")
	“
	“

	Right Double Quotation Mark (")
	”
	”

	Left Single Quotation Mark (')
	‘
	‘

	Right Single Quotation Mark (')
	’
	’

	Em Dash (—)
	—
	—

	En Dash (–)
	–
	–

	Hyphen (-)
	
	-

	Multiplication Symbol (x)
	
	×

	Ampersand (&)
	
	&

Style values:

Below is a list of style values currently used by the ERMP. The values on the left represent situations that may arise during the encoding of a document; those on the right demonstrate the ERMP’s TEI-appropriate coding solutions.

	Superscript
	<hi rend=”superscript”>

	Italic
	<hi rend=”italic”>

	Small caps
	<hi rend=”smallcaps”>

	All caps
	<hi rend=”caps”>

	Emphasis
	<emph rend=”italic”>

	Missing quotation marks
	<said rend=”noquote”>

	Single ending quotation mark
	<said rend=”endquote”>

	Notation*
	<note xml:id=”???” resp=”???” place=”botwin”>

*The attribute xml:id must be filled in with the appropriate id for the note itself. This will take the form (work_title)_note_(note number). The resp or responsibility attribute indicates the person responsible for creating the note, most notes being the responsibility of Dr. Hanson or #DH. Finally the place attribute of the note tag indicates the location that the note will show up on the website itself. For ERMP documents this should always be the value “botwin” or bottom window.

These style sheets should be adjusted as often as changes are made to them. It is extremely important that they remain up to date and available to all ERMP members as discussed in the following chapter. It is possible to alter the schema as well, but this process is best avoided as altering the schema might compromise quality control. For more information on altering the schema, please visit the schema portion of the TEI website, http://www.tei-c.org/Roma/.

Ch.6 Consistency, Consistency, Consistency

Perhaps the most important aspect of encoding documents for the ERMP is maintaining consistency. It is often said that it is better to do something consistently wrong than inconsistently correct. This is an accurate statement for a number of reasons. For one, the hierarchical nature of an XML document demands consistency. Thus, for example, stanzas should always come after divisions marking a poem. If the document does not maintain this type of structure, it will lose its significance as encoded data, and will be invalid according to the TEI.

Another important thing to remember in terms of consistency is the XSL transformation that will follow the encoding of a document. XSL matches templates to code found in the XML document. These matches must be exact and so it is necessary for the XML encoder to be consistent about the spelling and meaning of tags, attributes, and especially attribute values. As mentioned in Chapter 3, XSL will not be able to recognize the similarity of the values “italic” and “italics.” It will simply skip over the inconsistent code.

The final reason to maintain consistency in code is the “find and replace” function of most XML editors like oXygen. This function allows changes in code to be made by finding all instances of a given code and replacing it with another. Like the XSL transformation, this function, in order to work properly, must match the code exactly. It is relatively easy to replace every instance, say, of the element <hi rend="italic"> with <emph rend="italic"> if the code is consistent, but extremely difficult and time consuming if it is not. Sloppy, inconsistent coding would mean that changes made would need to be done by hand over every document involved in the project rather than simply running the “find and replace” function.

How do I keep my code consistent?
Consistency of code must be maintained, not only within your own encoding, but also across the project as a whole. You must work with all other ERMP team members to ensure that this consistency is constantly a priority. There are several ways you can facilitate this practice.
· Maintain a style sheet detailing the treatment of special textual circumstances.

· Communicate with other ERMP encoders on a regular basis.

· Implement changes to all documents as soon as the decision is made about them.

· Have your team members review your encoded work.

· When in doubt, consult the TEI guidelines.

· Discuss complex coding issues with everyone involved in the project.

Maintaining consistency is the most important step you can take to creating a useful digital archive. This issue should be at the forefront of your attention whenever you are encoding for the ERMP. By establishing good quality control practices in this area early, you will save yourself many, many hours and headache later on.

Ch.7 Established Encoding Procedure
The ERMP has established a routine for the encoding of Ruskin’s manuscripts. This routine is designed to focus encoders’ attention on certain aspects of encoding at any given time thereby limiting unnecessary and inconsistent coding. ERMP members work in a series of stages, with each stage being checked before moving to the next step. These stages progress through a given series of works until a final polished (or at least reasonably semifinal) document is produced. The workflow stages described below represent the ERMP’s current work progression.

Special note about first step of workflow: Thanks to an ingenious program written by the ERMP software consultant, Roger Garside, step 1 creates XML documents generated directly from Dr. Hanson’s original word processing documents of his edited transcriptions of the manuscripts. Because the program can be used only for an initial generation of the XML, it drops out of successive revisions of a given XML document, revision that must be undertaken in oXygen and validated as usual by the project schema. Once XML has been generated from all of Dr. Hanson’s remaining word processing files , this phase of the workflow will lapse altogether in future generations of the ERMP and workflow will begin with step 2: XML File Preparation.
1. Word Perfect Files

a. Student Worker cleans WPD files – The composition of document files in Microsoft Word implants invisible code instructions into the text of a document. Opening these documents in Word Perfect and viewing them in the “reveal codes” feature allows for the removal of these codes. Because Garside built his program based on Word Perfect Version 11, only this version must be employed in cleaning files. A later version will implant code that will confuse the program.

b. Dr. Hanson revises WPD file content – Many of the original files are incomplete (especially the notes and textual apparatus files) and must be revised or rewritten by Dr. Hanson at least to a certain extent.

c. Dr. Hanson runs ERProcess on RTF files saved from the revised WPD files – ERProcess is a stage of Garside’s program that transforms the RTF documents into “TEI Lite.”

i. Run “TEI Lite” through P4 to P5 update –The P4 to P5 update, provided by ERMP consultant Syd Bauman, does not provide the rewriting necessary to the TEI Lite, but rather updates the existing tags so they are compatible with the current TEI guidelines.

2. XML File Preparation

a. First-stage encoding (Encoder 1) – First-stage encoding focuses only on structural elements of a text. These include tagging appropriate divisions, line groups, lines, paragraphs, annotations, etc. Moreover, as already mentioned, this stage leaves behind initial word processing, and any subsequent changes made to the content of these documents MUST be made in XML following the TEI guidelines.
i. Copy resulting “TEI Lite” into ERMP template / Begin encoding document with TEI template – The ERMP has developed a template with the header, and text sections structured appropriately. By using this template we minimize the chance for error as well as reduce workload by eliminating redundant typing. The template is designed so as to require only slight alterations to its existing code. (See Appendix)

ii. Maintain consistency measures — While encoding remember the consistency practices mentioned in Chapter 6. If Dr. Hanson’s original file contains symbols designating manuscript features, these will need to be translated into appropriate tags in consultation with him (see 2.b.ii, below).

iii. Cleanup of HTML entities – Because of the limitations of browser technology, the ERMP uses HTML entities to represent a great deal of punctuation. These can be found in Chapter 5. Use the “find and replace” function to ensure that all necessary punctuation is changed.

iv. Dr. Hanson checks work and corrects header – When the file reaches this stage of encoding it should be transferred to Dr. Hanson as the central repository for files and backed up onto the ERMP hard drive. Dr. Hanson will complete the first encoding stage by checking the accuracy of encoding and providing information in the header that requires detailed Ruskin knowledge.

b. Second-stage encoding (Encoder 2) – The same encoder should not work on one file from start to finish. The second-stage encoding focuses on enriching existing XML encoding. Proper names should be identified, hypertextual references should be tagged appropriately, and any further coding should be carried out at this stage.

i. Compare image of manuscript to XML file – While encoding the second stage for the ERMP, compare the manuscript image and the XML file side by side, checking for coding accuracy.

ii. Add appropriate coding to describe and interpret manuscript features – With the manuscript image at hand, now is the time to encode such features as crossed-out or otherwise deleted words, words added above the line, etc. Often, Dr. Hanson’s original transcript has already marked such features, but since the transcript was taken before the TEI was even thought of, he used private code that must be translated into appropriate tags.

iii. Dr. Hanson checks second-stage encoding – This stage, like the first, will be checked by Dr. Hanson. The files should repeat the backup process as before, and are ready at this point to move on to XSLT and web presentation.

3. Uploading – As files become completed they should be uploaded to the ERMP server. This step will be carried out by either Dr. Hanson or the ERMP computer consultant.

Ch.8 Non-coding Tasks for the ERMP

In addition to your work encoding Ruskin documents in XML, ERMP members will undertake several additional responsibilities. The Ruskin archive depends heavily on the scanned images of Ruskin’s manuscripts. It is necessary, therefore, that you be able to use and manipulate these images to ensure the highest quality possible for these files.

We receive these images from a number of sources. Most of our images come from one of four libraries, the Beinecke Rare Book and Manuscript Library at Yale University, the Pierpont Morgan Library in New York City, the Special Collections Department of the Princeton University Library, or the Huntington Library in San Marino, California. These libraries contain the majority of Ruskin’s early manuscripts, and part of Dr. Hanson’s grants has been allocated to purchasing scanned copies of the material. Material received from these libraries comes on individually labeled DVDs with each file named in the order it was imaged. These files must be backed up onto the ERMP’s 1TB external hard drive. Backing the files up allows us to maintain working copies of these files while storing the original discs in a safe location. After backing up the files, each image must be cropped to an appropriate size and renamed so that the information it contains is readily available to those working on the project.

How do I use the ERMP hard drive?

Using the ERMP’s external hard drive is simple. All you do is place the drive alongside the computer you are working on and plug it in. You will need to connect the hard drive’s power adapter as well as the USB cable that connects to the computer. From here simply navigate to the hard drive location from the computer. Note the folder structure of the hard drive. This disk serves as backup for the entire project, and so there is a folder named “XML” containing the project’s encoded documents as well as a folder named “Manuscipt Images” containing the project’s image files.

Aside from backing up their coding, ERMP members work primarily in the Manuscript Images folder. Within this folder, each image source has its own specific area describing its source library. Within these folders are a series of sub-folders named after the DVD disc they were copied from. This nomenclature ensures that replacement files can easily be located in the event that data gets corrupted on the drive. Remember when backing up files to maintain this structure. In other words, when files are copied from a new source, they should not all be placed in the same folder, but rather a new folder should be created for each disc being backed up. As files are backed up, they should be entered into the ERMP’s manuscript image spreadsheet.

How do I use the manuscript image spreadsheet?

The ERMP has developed a manuscript image spreadsheet for tracking the progress of its image files. This spreadsheet is located on the backup hard drive and should be updated immediately as image files are worked on. To use the spreadsheet, open “Image_name_record.xslx” from the ERMP hard drive. This file maintains a record of each separate image file used by the archive. The spreadsheet categories are represented below. Each image file will need to be opened, studied, and renamed so that the spreadsheet can be filled out completely.

Manuscript image spreadsheet:
Original File Name: This column contains the original file name of each image file. The original file name can be found on the DVD containing it. Most original file names are simply a series of numbers assigned by the original library. The original file name contains no relevant information for the ERMP, but must be recorded in case a duplicate copy needs to be extracted from the original DVD.
Manuscript: This column contains the name of the manuscript represented by the image. The manuscript information can be obtained by comparing the opened image file to Dr. Hanson’s notes about each manuscript. These notes contain detailed information on the physical appearance and composition of all of Ruskin’s manuscripts. The notes can be accessed by opening the file “Part2.doc” on the ERMP hard drive. (Part2.doc is an early version of material being revised for the works’ apparatus.)

New File Name: This column contains the new file name given to the image by the ERMP. It is important that this field matches the new name of the image file exactly, so that its record can be located by searching the spreadsheet.

DVD Location: This column contains the name of the DVD containing the image file. This information can be found written on the DVD itself or on the case it comes in.
Status: This column indicates the file’s status. Status entries should be either left blank to indicate no work done or contain the word “Cropped” to indicate that the file has undergone image manipulation.

More Info: This column contains any significant information relevant to the file itself. Use this field to take any notes you think may be important concerning the file.

How do I rename an image?

Because the original file name contains no useful information concerning the contents of the image, a new file name must be assigned to each file. This file name should reflect the contents of the image file, so that it can be referenced at a glance without the need to open the image. New file names should follow the formula (MS#leaf_information-leaf_information). This may take the form of pagination as in the file “MSVp2-3” or it may take the form of a physical description as in “MSVfront_cover”. Oftentimes, Ruskin did not paginate his manuscripts, and therefore assigning a page number would be incorrect. For non-paginated leaves, include the leaf’s recto and verso numbers as in the file “MSVIII105v-106r”. Lowercase v indicates a verso of a leaf, and lowercase r indicates a recto of a leaf. This information can be deduced by comparing the opened image file with Dr. Hanson’s detailed notes in “Part2.doc” as was done for the manuscript entry. Remember to actually rename the original file with the name assigned in the spreadsheet as it is entered.
How do I crop the images?

Cropping the images is an extremely simple process. Follow the steps below to crop each image file. Remember to go back to the manuscript image spreadsheet and update the file’s entry with any changes you make in manipulating the image.

1. Open the image in Adobe Photoshop.

2. Select the crop tool by pressing the C button on your keyboard. Alternatively press the crop button to the left of the Photoshop interface.

3. Select the edge of the manuscript you are working on. When cropping, be sure to eliminate as much black space as you can, but maintain the edges of the manuscript itself – the edge, that is, not just of the page, but of the binding of the notebook showing behind the page, as such information is potentially relevant to Ruskin scholars.

4. Drag the cursor to the opposing end of the manuscript and release.

5. Right click within the illuminated area.

6. Press the crop button.

7. Save the newly cropped image by selecting save under the file menu.
Ch.9 Where it goes from here?
After a document has gone through the XML encoding process by ERMP team members, there is still a ways to go before it is ready for presentation on the internet. XSL transformation files will be formulated allowing the data contained in the XML to be reconfigured as HTML for web viewing. These HTML files will then be associated with CSS files which will provide the cosmetics of the ERMP website. The complete archive of documents including works and corresponding apparatus files, image files, and XSL files will need to be uploaded to the ERMP’s server. The files will be combined in such a way as to create a web interface for the public viewing of these documents. As the project goes through subsequent editions, it may become necessary to revisit the XML encoded documents and provide additional tagging related to specific new goals. Because of the relationship between XML and XSL, this revision process should happen smoothly and efficiently. Appropriate files will only need to be updated and run through the transformation process again before the changes can take place.

Much like the project’s anticipated post-publication changes, the needs of the project itself may change even prior to launch. For this reason, the orientation manual is designed to accommodate these changes. Rather than using this document as a playbook for encoding with the ERMP, it should be viewed as a means of communicating the knowledge base required for effective coding. As such, the orientation manual itself should evolve with the project. As rules and procedures change, the change should be reflected within this document. Reference material should also be freely added or removed as its relevance increases or declines, and important examples should be appended to the end for new team members to consider prior to their start with the ERMP.

ERMP team members should be open to the possibility of change as they progress in the project. They should not allow themselves to become so rigid that they miss an opportunity to improve the relevance and usefulness of the archive. That being said, they should also remember that they are in fact part of a team and so rely on effective communication and standardization across the project. Changes in coding should be accepted by all parties concerned or delayed until a suitable solution presents itself. Furthermore, once a change is decided upon, it should be immediately documented and implemented in all prior work.

What should I consider in the project’s future?

Up to this point, ERMP members have focused on structural aspects of encoding. With the exception of a few “prototype documents” most of the files in the archive have only made it through first-level encoding. Future revisions of the archive will likely stress searchability, and more fine-tuned encoding of handwritten manuscripts. This is not all that encoding can offer, however. Future ERMP members should ask themselves, “What might I find helpful or interesting as a user of this archive?” and then locate the appropriate TEI solution for consideration. The possibilities for future expansion are limited only by the creativity of those encoding.

Have Fun!

As an ERMP member you are on the cutting edge of digital scholarship. This project will provide you an opportunity to develop useful skills in a number of fields. You will gain experience in academic scholarship and research, digital encoding, and publishing. You will collaborate with a team of enthusiastic co-workers who have a vested interest in your success as an encoder. Enjoy your time encoding for the ERMP and remember that you are producing an archive that will advance scholarship for Ruskin scholars and other humanists worldwide. You are in for an exciting experience!

Further Reading

· www.w3schools.com — The w3 Schools offers an amazing collection of knowledge relevant to the ERMP. This resource should be consulted for information regarding HTML, XML, XSLT and any other web technology.
· www.dhsi.org — The Digital Humanities Summer Institute offers annual courses on Digital Humanities. For those seriously interested in this branch of scholarship, this should prove an invaluable resource.
· http://unixgen.muohio.edu/~chat/xslt/ — Dr. Laura Mandell of NINES, who has consulted for ERMP, has provided several online tutorial videos concerning TEI and specifically XSLT. These courses should prove invaluable in understanding the relationship between XML encoding and XSLT transformation.
· http://tbe.kantl.be/TBE/TBE.htm — The TEI by Example website provides case specific problems that may arise in the encoding of scholarship and demonstrates multiple valid examples for dealing with these problems.
· www.nines.org/ — The NINES website provides the tools for performing complex analysis of scholarly archives. also lists the criteria for acceptance into the interface, and these criteria should be consulted from time to time to ensure our compliance and compatibility.
· www.tei-c.org — This is the official TEI website containing the latest TEI guidelines. While much of this information will prove inapplicable to ERMP, these guidelines should be considered the definitive answer to any encoding problem. Bookmark this site now, because you will consult it frequently!
· www.wwp.brown.edu/ — The Women Writers Project at Brown is a digital humanities project by Syd Bauman and Julia Flanders, who have served as consultants for ERMP.
· www.wwp.brown.edu/encoding/workshops/selu2009/index.html — This link is a special seminar constructed by Syd Bauman and Julia Flanders for presentation at SELU in 2009. The resource contains the slideshow presentation they gave over the two-day seminar as well as the files they provided.
· www.whitmanarchive.org/ — The Walt Whitman archive represents the type of archive the ERMP is attempting to create. In designing the layout and functionality of the Ruskin archive, this archive has been frequently consulted.
· www.blakearchive.org — The Blake archive also represents our type of archive. The Blake archive demonstrates, in particular, the importance of encoding multiple witnesses and providing multiple image scans where they are available.
· www.lancs.ac.uk/fass/ruskin/empi/index.htm — This is a digital edition of Ruskin’s first volume of Modern Painters. This site contains each witness of Modern Painters. First published in 1843, this book established Ruskin’s reputation, and in a sense the early Ruskin manuscripts all lead up to its composition. The site should therefore be regarded as a complement to ours, although different in its design and methodology.
· www.lancs.ac.uk/depts/ruskinlib/eSoV/index.html — Ruskin’s Venetian Notebooks is another online Ruskin archive supported by Lancaster University. Note that this archive allows you to view a facsimile and a transcript of each manuscript as well as a transcript from the published version in the Library Edition.
· http://ruskin.ashmus.ox.ac.uk — The Elements of Drawing is a Ruskin Archive which features a browsable and searchable collection of Ruskin’s teaching resources for his Oxford Drawing Schools. The ERMP aims to incorporate such navigation into its own archive.
· www.digitalhumanities.org — This is an excellent resource for learning more about all sorts of digital humanities scholarship. For those interested in pursuing this subject further, this website should be consulted frequently.
· http://www.mla.org/resources/documents/rep_scholarly/cse_guidelines — The Modern Language Association provides guidelines for the editors of scholarly editions of a text. These guidelines should be reviewed by ERMP team members in order to familiarize themselves with their roles in relation to the Ruskin documents.
Appendix

ERMP Template
<?xml version="1.0" encoding="UTF-8"?>

<?oxygen RNGSchema="ruskin.rnc" type="compact"?>

<TEI xmlns="http://www.tei-c.org/ns/1.0">

 <teiHeader>

 <fileDesc>

 <titleStmt>

 <title type="main">#########</title>

 <title type="sub">etext generated from a transcription of a manuscript</title>

 <author>

 <persName>John Ruskin</persName>

 </author>

 <editor>

 <persName>David Hanson</persName>

 </editor>

 <sponsor>Southeastern Louisiana University</sponsor>

 <funder>Louisiana Board of Regents</funder>

 </titleStmt>

 <editionStmt>

 <edition>ERM version 1.0 encoded Oct. 2009</edition>

 </editionStmt>

 <publicationStmt>

 <idno>###########</idno>

 <date when="2010-01-14">#######</date>

 <distributor>The Early Ruskin Manuscripts Project</distributor>

 <address>

 <addrLine>Southeastern Louisiana University</addrLine>

 <addrLine>Department of English</addrLine>

 <addrLine>SLU 10861</addrLine>

 <addrLine>Hammond, LA 70402</addrLine>

 <addrLine>erm@humanitiesonline.selu.edu</addrLine>

 </address>

 <availability status="restricted">

 <p>###INSERT COPYRIGHT STATEMENT###</p>

 </availability>

 </publicationStmt>

 <notesStmt>

 <note type="influence">###Insert notation of poetic influences here###</note>

 </notesStmt>

 <sourceDesc>

 <bibl>

 <!-- possibly change to <msDesc> tag-->

 <author>John Ruskin</author>

 <title>########</title>

 <note type="project">Transcribed from original manuscript</note>

 </bibl>

 </sourceDesc>

 </fileDesc>

 </teiHeader>

 <text>

 <front>

 <head>#########</head>

 <!-- Front matter should only be used for acurately representing the manuscript being transcribed... not to display a heading in the website....-->

 </front>

 <body>

 <!-- Use the appropriate Div within the body tag based on what type of document you are dealing with. Delete the other div tags if they are not being used in this section.... In other words if you are doing a poem you do not need the info for prose or drama-->

 <div type="section">

 <!-- Simple prose -->

 <head>Head of section</head>

 <p>Paragraph of content.</p>

 <p>Paragraph with a list inside … <list type="ordered">

 <item>An item in a list</item>

 <item>Another item.</item>

 <item>Sure is a lot like HTML, isn't it?</item>

 </list>

 </p>

 </div>

 <div type="poem">

 <!-- Simple verse -->

 <head>Poem title</head>

 <lg type="stanza">

 <l>I think that I shall never see</l>

 <l>A file as lovely as a tree.</l>

 </lg>

 </div>

 <div type="act">

 <!-- Simple drama -->

 <sp>

 <speaker>Antony</speaker>

 <stage>Pacing anxiously</stage>

 <l>I come to bury <name>Caesar</name>, not to praise him.</l>

 </sp>

 </div>

 </body>

 </text>

</TEI>

Wales

<?xml version="1.0" encoding="UTF-8"?>

<?oxygen RNGSchema="../../ruskin.rnc" type="compact"?>

<TEI xmlns="http://www.tei-c.org/ns/1.0">

 <teiHeader>

 <fileDesc>

 <titleStmt>

 <title type="main">Wales</title>

 <title type="sub">etext generated from a facsimile of Library Edition</title>

 <author><persName>John Ruskin</persName></author>

 <editor><persName>David Hanson</persName></editor>

 <sponsor>Southeastern Louisiana University</sponsor>

 <funder>Louisiana Board of Regents</funder>

 </titleStmt>

 <editionStmt>

 <edition>ERM version 1.0 encoded Oct. 2009</edition>

 </editionStmt>

 <publicationStmt>

 <idno>12.LibEd</idno>

 <date when="2010-07-06">July 6, 2010</date>

 <distributor>The Early Ruskin Manuscripts Project</distributor>

 <address>

 <addrLine>Southeastern Louisiana University</addrLine>

 <addrLine>Department of English</addrLine>

 <addrLine>SLU 10861</addrLine>

 <addrLine>Hammond, LA 70402</addrLine>

 <addrLine>erm@humanitiesonline.selu.edu</addrLine>

 </address>

 <availability status="restricted">

 <p>###INSERT COPYRIGHT STATEMENT###</p>

 </availability>

 </publicationStmt>

 <notesStmt>

 <note type="influence">###Insert notation of poetic influences here###</note>

 </notesStmt>

 <sourceDesc>

 <bibl><!-- possibly change to <msDesc> tag-->

 <author>John Ruskin</author>

 <title>Library Edition</title>

 <note type="project">Transcribed from original manuscript</note>

 </bibl>

 </sourceDesc>

 </fileDesc>

 </teiHeader>

 <text>

 <body>

 <div type="poem">

 <head type ="title"><hi rend="caps">Wales</hi></head>

 <lg type="stanza" rhyme="ababcddee">

 <l>That rock with waving willows on its side</l>

 <l>That hill with beauteous forests on its top</l>

 <l>That stream that with its rippling waves doth glide</l>

 <l>And oh what beauties has that mountain got</l>

 <l>That rock stands high against the sky</l>

 <l>Those trees stand firm upon the rock</l>

 <l>and seem as if they all did lock</l>

 <l>Into each other; tall they stand</l>

 <l>Towering above the whitened land.<hi rend="superscript">1</hi><note xml:id="wales_note_1" n="1" resp="#LIBED" place="botwin">[These lines come from a MS. book (of 1827-1829) called "Poetry Discriptive"; Ruskin refers to them, and explains the epithet "whitened" as "a very artistical observation for a child," in a letter to his parents of October 23, 1853, printed in Vol. XII. pp. xxi-xxii.]</note></l>

 </lg>

 </div>

 </body>

 </text>

</TEI>

33

